The Limit Superior and Limit Inferior

A number a is called a limit point of the sequence {ay} if it is the limit of a subsequence
of {an}. A bounded sequence has at least one limit point according to Bolzano-Weierstrass
Theorem. A properly divergent sequence does not have any limit point.

Let {a,} be a sequence bounded from below. For each k£ > 1, the number

ﬂk =supan = {ak,ak+1aak+27 o } ’
n>k

is in (—o0,00]. It is clear that {f;} is decreasing and bounded from below. By Monotone
Convergence Theorem, its limit exists. We call it the limit superior of the sequence of {a,}.
In notation,

lim ay,, or limsup{a,} = lem Br = inf{f} = iréf sup{an }n>k -
o0

Similarly, the number

ay = inf a, = inf{ay, ap41,ap40, -},
n>k

is a real number when the sequence is bounded from above. It is clear that {ay} is increasing
and bounded from above. By Monotone Convergence Theorem, its limit exists. We call it the
limit inferior of the sequence of {a,}. In notation,

lim ay, or liminf{a,} = klim ag = sup{ag} = supinf{a, }n>r -
—00 k B

Theorem 1. Let a = lim,,_o0ln,.
(a) For each € > 0, there is some ng such that a, < a+ ¢ for all n > nyg.
(b) For each e > 0, there is a subsequence {an,} satisfying an; > a—¢ .

Proof. (a) By the definition of infimum, for any ¢ > 0, there is some ky such that gy < a+¢
for all £ > kg. It follows from the definition of 5 that a, < a + ¢ for all n > kq. It suffices to
take ng = ko.

(b) It suffices to show there is a subsequence converging to a. Since a = limg_,o, S = infy fy,
for each N > 1, there is some n(N) such that

1
a+N>Bn(N)ZG- (1)
From the definition of the supremum, we can find a,, from {a,ny, @p(nv)41, Gn(v)42, -} tO
form a subsequence {a, } such that

1
By 2 any > By — 3 - (2)
Combining (1) and (2), we have
1
lan,y —al < N

It follows that the subsequence {an, }3_; converges to a.
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From Theorem 1, we deduce the following characterization of limit superior and limit inferior.

Theorem 2. The limit superior of a bounded sequence is its largest limit point and its limit
infimum is its smallest limit point.

As an application to power series, we prove

Theorem 3 (Cauchy-Hadamard) The power series Y anz™ is absolutely and uniformly con-
vergent on [—r,r| for r € (0, R) where R is its radius of convergence, and it is divergent at any
z,|x| > R.

We have taken the center 2o = 0 for simplicity. Recall that a series of functions Y f,, is called
absolutely and uniformly convergent on some set E if > 77 | | fi|(x) is uniformly convergent on
E. Tt implies that >, fx(z) is also uniformly convergent on E.

Proof. Recall that R = 1/p where p = lim,,_so0|an|"/" € [0, 00]. According to Theorem 1(a), for
cach & > 0, |an|'/™ < p+ ¢ for all n > ng. As a result,

(lanlle)/™ = laal"a] < rlaa/™ < r(p+e), Ve € [-rr] ,n>ng.

Observing that 7(p+¢) < 1 when ¢ = 0, we can find a small ¢g > 0 such that ro = r(p+¢eo) < 1.
It follows that
|anllx]* <75, Vnzmng.

By M-Test, > anz™ converges absolutely and uniformly on [—r,7].

On the other hand, for each € > 0, there is a subsequence ay,, satisfying a,; > a —¢. Therefore,
lana™| V" = |z||an|Y™ > |z|(p — €) at all n = n;. Since |z|p > 1, we can fix a small ; such that
|z|(p —€1) > 1, so |a,a™ > 1 at all n = n;. It implies that ) a,a™ is divergent (since anz™

must converge to 0 when it is convergent).



