
The Limit Superior and Limit Inferior

A number a is called a limit point of the sequence {an} if it is the limit of a subsequence
of {an}. A bounded sequence has at least one limit point according to Bolzano-Weierstrass
Theorem. A properly divergent sequence does not have any limit point.

Let {an} be a sequence bounded from below. For each k ≥ 1, the number

βk = sup
n≥k

an = {ak, ak+1, ak+2, · · · } ,

is in (−∞,∞]. It is clear that {βk} is decreasing and bounded from below. By Monotone
Convergence Theorem, its limit exists. We call it the limit superior of the sequence of {an}.
In notation,

lim an, or lim sup{an} = lim
k→∞

βk = inf{βk} = inf
k

sup{an}n≥k .

Similarly, the number
αk = inf

n≥k
an = inf{ak, ak+1, ak+2, · · · } ,

is a real number when the sequence is bounded from above. It is clear that {αk} is increasing
and bounded from above. By Monotone Convergence Theorem, its limit exists. We call it the
limit inferior of the sequence of {an}. In notation,

lim an, or lim inf{an} = lim
k→∞

αk = sup{αk} = sup
k

inf{an}n≥k .

Theorem 1. Let a = limn→∞an.

(a) For each ε > 0, there is some n0 such that an ≤ a+ ε for all n ≥ n0.

(b) For each ε > 0, there is a subsequence {anj} satisfying anj ≥ a− ε .
Proof. (a) By the definition of infimum, for any ε > 0, there is some k0 such that βk ≤ α + ε
for all k ≥ k0. It follows from the definition of βk that an ≤ a + ε for all n ≥ k0. It suffices to
take n0 = k0.

(b) It suffices to show there is a subsequence converging to a. Since a = limk→∞ βk = infk βk,
for each N ≥ 1, there is some n(N) such that

a+
1

N
> βn(N) ≥ a . (1)

From the definition of the supremum, we can find anN from {an(N), an(N)+1, an(N)+2, · · · } to
form a subsequence {anN } such that

βn(N) ≥ anN > βn(N) −
1

N
. (2)

Combining (1) and (2), we have

|anN − a| <
1

N
.

It follows that the subsequence {anN }∞N=1 converges to a.
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From Theorem 1, we deduce the following characterization of limit superior and limit inferior.

Theorem 2. The limit superior of a bounded sequence is its largest limit point and its limit
infimum is its smallest limit point.

As an application to power series, we prove

Theorem 3 (Cauchy-Hadamard) The power series
∑
anx

n is absolutely and uniformly con-
vergent on [−r, r] for r ∈ (0, R) where R is its radius of convergence, and it is divergent at any
x, |x| > R.

We have taken the center x0 = 0 for simplicity. Recall that a series of functions
∑
fn is called

absolutely and uniformly convergent on some set E if
∑∞

k=1 |fk|(x) is uniformly convergent on
E. It implies that

∑∞
k=1 fk(x) is also uniformly convergent on E.

Proof. Recall that R = 1/ρ where ρ = limn→∞|an|1/n ∈ [0,∞]. According to Theorem 1(a), for
each ε > 0, |an|1/n ≤ ρ+ ε for all n ≥ n0. As a result,

(|an||x|n)1/n = |an|1/n|x| ≤ r|an|1/n ≤ r(ρ+ ε), ∀x ∈ [−r, r] , n ≥ n0 .

Observing that r(ρ+ε) < 1 when ε = 0, we can find a small ε0 > 0 such that r0 ≡ r(ρ+ε0) < 1.
It follows that

|an||x|n ≤ rn0 , ∀n ≥ n0 .

By M -Test,
∑
anx

n converges absolutely and uniformly on [−r, r].

On the other hand, for each ε > 0, there is a subsequence ann satisfying anj ≥ a− ε. Therefore,

|anxn|1/n = |x||an|1/n ≥ |x|(ρ− ε) at all n = nj . Since |x|ρ > 1, we can fix a small ε1 such that
|x|(ρ − ε1) ≥ 1, so |anxn| ≥ 1 at all n = nj . It implies that

∑
anx

n is divergent (since anx
n

must converge to 0 when it is convergent).


